Un equipo del CONICET logró visualizar con Inteligencia Artificial un neurorreceptor implicado en enfermedades como el Alzhéimer y la miastenia gravis. La herramienta podría servir en un futuro para diagnosticar diversas patologías.
Un grupo de científicos argentinos del CONICET liderado por el investigador Francisco Barrantes, del Instituto de Investigaciones Biomédicas (BIOMED), logró visualizar por primera vez en forma directa la dinámica de una proteína de membrana interactuando con el lípido neutro colesterol, proceso que se ve afectado en ciertas enfermedades neurológicas, como el Alzheimer o la miastenia gravis. La visualización fue posible a través de la combinación de la microscopía de superresolución más avanzada con la que se cuenta en la actualidad, denominada MINFLUX, y métodos analíticos de Inteligencia Artificial (IA), y se publicaron en dos trabajos en Nature Communications, por el aporte que implica revelar un aspecto totalmente novedoso dentro del campo de los receptores de neurotransmisores.
“La organización supramolecular y la función de las proteínas de membrana y de aquellas que actúan como receptores en la superficie celular han sido objeto de intensos estudios dada su importancia en la transmisión de señales y la fisiología celular en general. Los receptores de neurotransmisores juegan un papel crucial en el sistema nervioso, con importantes implicancias en patologías neurológicas y neuropsiquiátricas y nosotros, por primera vez, pudimos verlos en forma directa en una célula viva, interactuando con el colesterol”, explica Barrantes.
Desde 2008, el equipo de Barrantes cuenta con un microscopio de superresolución STORM (Stochastic Optical Reconstruction Microscopy), uno de los pocos en el país, construido con ayuda del premio Nobel alemán Stefan Hell, que permite ver el comportamiento de las células en su ambiente natural, en una escala nanoscópica, es decir, extremadamente pequeña y por debajo del límite de resolución del microscopio óptico. La superresolución de este microscopio desafía la óptica al permitir estudiar la estructura de células vivas y su comportamiento a una escala por debajo del límite resolución sin dañarlas, lo que antes era prácticamente imposible, ya que para verlas debían someter a las células a irradiación con electrones o rayos X que las alteraba o bien las destruía.
Barrantes complementa estas microscopías con técnicas de IA para mejorar aún más las imágenes. “Gracias a la IA nosotros estamos refinando las imágenes que obtenemos del microscopio, que sumadas a técnicas de simulación y de otros tipos, nos permiten extraer información adicional e interpretar las imágenes con mayor precisión y detalle”, explica el científico, que cuenta en su equipo con la colaboración de los graduados de Ciencias de la Computación de la UCA Lucas Saavedra y Héctor Buena-Maizón. “Estamos pudiendo abordar aspectos antes inalcanzables, como estudiar la movilidad de proteínas de membrana y del lípido más importante que tienen dichas membranas, el colesterol, en tiempo real”, señala. “Es la primera vez que se ha podido hacer este tipo de abordaje con una proteína de membrana”, aclara.
“Seguir utilizando estas técnicas nos va a permitir entender cuáles son los factores de la superficie celular que gatillan la acumulación patológica de receptores y su ulterior destrucción en las células musculares. Y también estamos trabajando de manera similar en otras patologías neurológicas y neuropsiquiátricas que cursan con agregación patológica de receptores en la sinapsis, como la enfermedad de Alzheimer”, asegura Barrantes.






